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ABSTRACT
Web archives preserve the history of Web sites and have
high long-term value for media and business analysts. Such
archives are maintained by periodically re-crawling entire
Web sites of interest. From an archivist’s point of view,
the ideal case to ensure highest possible data quality of
the archive would be to “freeze” the complete contents of
an entire Web site during the time span of crawling and
capturing the site. Of course, this is practically infeasible.
To comply with the politeness specification of a Web site,
the crawler needs to pause between subsequent http requests
in order to avoid unduly high load on the site’s http server.
As a consequence, capturing a large Web site may span
hours or even days, which increases the risk that contents
collected so far are incoherent with the parts that are still to
be crawled. This paper introduces a model for identifying
coherent sections of an archive and, thus, measuring the
data quality in Web archiving. Additionally, we present a
crawling strategy that aims to ensure archive coherence by
minimizing the diffusion of Web site captures. Preliminary
experiments demonstrate the usefulness of the model and
the effectiveness of the strategy.

Categories and Subject Descriptors
H.3 [Information Storage and Retrieval]:
Content Analysis and Indexing

General Terms
Measurement

Keywords
Web Archiving, Data Quality, Temporal Coherence

1. INTRODUCTION
The goal of Web archiving is to preserve the history of Web

sites by repeatedly crawling entire sites and adding versions
of both page-contents and page-link structures to an append-
only archive. The most well-known endeavor of this kind is
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the work of the Internet Archive, but national libraries and
national archives also have specialized activities along these
lines [15]. Capturing the history of digitally born informa-
tion and preserving the cultural and political zeitgeist of an
era offers a potential gold mine for all kinds of media and
business analysts, such as political scientists, sociologists, me-
dia psychologists, market analysts, and intellectual-property
lawyers. For example, one could analyze the effectiveness of
political campaigns, search Web sites for prior art that may
be relevant in assessing patent applications, or test former
versions of Web sites for compliance with country-specific
legal rules for Internet media. In essence, a Web archive is a
data warehouse for Internet contents, and the quality of the
captured data – such as completeness and mutual consistency
of a Web site’s pages – is decisive for building value-added
applications on top of an archive.

Despite the initiatives of the International Internet Preser-
vation Consortium (IIPC)1 and the Internet Archive2 in
capturing Web contents for future generations, limitations
such as storage space, bandwidth, and crawling politeness as
well as threats such as Web spam and crawler traps heavily
affect the crawling performance and, thus, the quality of
the collected data. Current methods are based on snapshot
crawls and “exact duplicate” detection [15]. The coherence of
data in terms of proper dating and proper cross-linkage is in-
fluenced by the temporal characteristics (duration, frequency,
etc.) of the crawl process.

Web archiving is commonly understood as a continuous
process that aims at archiving the entire Web (broad scope).
However, a typical scenario in archiving institutions or com-
panies is to periodically – e.g. monthly – create high quality
captures of a certain Web site. These periodic domain scope
crawls of Web sites aim at obtaining a best possible repre-
sentation of a site. A reason for customers having their site
archived on a regular basis is, for instance, to guard itself
against accusations regarding intellectual property rights,
fraud or non-compliance with legal requirements (e.g. EU
laws about imprints, terms of use, etc.). Figure 1 contains
an abstract representation of such a domain scope crawling
process. This Web site consists of n pages (p1, . . . , pn). Each
of them consists of several successive versions, indicated by
the horizontal lines (e.g., pn has three different versions in
[t; t′]). Ideally, the result of a crawl would be a complete and
instantaneous snapshot of all pages at a given point of time.
In reality, one crawl requires an extended time period to
gather all pages of a site while being potentially modified in

1http://netpreserve.org
2http://www.archive.org
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Figure 1: Web site crawling process (domain scope)

parallel, causing thus incoherencies in the archive. The risk
of incoherence increases further due to politeness constraints
and need for sophisticated time stamping mechanisms.

An ideal approach to Web archiving would be to have cap-
tures for every domain at any point in time whenever there
is a (small) change in any of the domain’s pages. Of course,
this is absolutely infeasible given the enormous size of the
Web, high content-production rates in blogs and other Web
2.0 venues, the disk and server costs of a Web archive, and
also the politeness rules that Web sites impose on crawlers.
We therefore settle for the realistic goal capturing Web sites
at convenient points (whenever the crawler decides to de-
vote resources to the site and the site does not seem to be
highly loaded), but when doing so, the capture should be
as “authentic” as possible. In order to ensure an “as of time
point x (or interval [x, y])” capture of a Web site, we need
to develop an archiving crawler that ensures coherence of
crawls regarding a time point or interval, and identifies those
contents of the Web site that violate coherence.

This paper formalizes these intuitive considerations and
develops a model for Web archive quality centered around
the notion of the coherence of a site capture. We discuss
various ramifications of this model, identifying practically
feasible approaches, and we present appropriate crawling
strategies that aim to maximize the quality of a Web archive
within given resource constraints.

The rest of the paper is organized as follows. In Section 2
we give an overview on related research and point out the
key aspects that make Web archiving very different from
crawling and indexing for search engines. In Section 3, we
give a formal definition of our archive coherence model and
discuss the underlying assumptions. Based on this model
we explain how to measure and (in the subsequent step)
assure the coherence of an archive with respect to a time
point or time interval. In Section 4, we present the strategies
toward optimized archive coherence. Our strategies increase
the probability of obtaining largely coherent crawls and are
compared with conventional crawling strategies in Section 5.

2. RELATED WORK
The Web is a continuously evolving network of contents and

an interconnecting link structure, which requires developing
strategies for adopting to change in content, size, topology
and use [14]. Hence, the Web might not be understood in a
holistic approach of a single discipline, but needs to be best
investigated in a combined approach with methodologies
adopted from various disciplines. In this aspect, ongoing
research in the field of Web science [9] tries to incorporate
approaches from various disciplines, such as algorithmics [2],
data mining [4], physics [1], sociology [12] and media theory
[10]. However, related research is up to now mostly confined
to approaches originating from a single discipline. Primarily,

research is focused on improving the efficiency of crawlers
for Web indexing in search engines or crawler development
in general. The contribution of Pant et al. [19] describes
the technical process involved in Web crawling. A quite
technical overview on the Heritrix crawler is given by Mohr
et al.. However, they do not address the issue of coherence
[16]. B. E. Brewington and G. Cybenko [3] analyze changes
of Web sites and draw conclusions about how often they must
be reindexed. The issue of crawl efficiency is addressed by
Cho et al. [8]. They state that the design of a good crawler
is important for many reasons (e.g. ordering and frequency
of URLs to be visited) and present an algorithm that obtains
more relevant pages (according to their definition) first. In
a subsequent study Cho and Garcia-Molina describe the
development of an effective incremental crawler [5]. They
aim at improving the collection’s freshness by bringing in new
pages in a more timely manner. Into the same direction head
their studies on effective page refresh policies for Web crawlers
[6]. Here, they introduce a poisson process based change
model of data sources. In another study, they estimated the
frequency of change of online data [7]. For that purpose, they
developed several frequency estimators in order to improve
Web crawlers and Web caches. In a similar direction goes
research of Olston and Pandey [18] who propose a recrawl
schedule based on information longevity in order to achieve
good freshness. Another study about crawling strategies is
presented by Najork and Wiener [17]. They have found out
that breadth-first search downloads hot pages first, but also
that the average quality of the pages decreases over time.
Therefore, they suggest performing strict breadth-first search
in order to enhance the likeliness to retrieve important pages
first. Research on improving the scalability of a Web crawler
in order to crawl 6 billion pages and beyond is presented
by Lee et al. [13]. Their findings show that changing the
BFS crawling order and designing low-overhead disk-based
data structures increase the efficiency of large-scale crawlers.
A dedicated survey about the evolution and dynamics of
wikis as social networks is done by Klamma and Haasler
[11]. Interesting in this paper is the disclosure of social
networks based on the hierarchical structure of important
and unimportant nodes.

Summarizing, before mentioned related research depicts
some of the key challenges to be solved for ensuring crawl
coherence. As we have figured out already, related research
mostly focusses on aligning crawlers towards more efficient
and fresher Web indexes. However, aiming at an improved
crawl performance against the background of assured crawl
coherence requires a slightly different alignment. Our task
therefore is to achieve both: Increase the probability of
obtaining largely coherent crawls and identify those contents
violating coherence.

3. ARCHIVE COHERENCE MODEL
In this section, we introduce our archive coherence model.

We start with basic assumptions and the notation. After
that, we introduce our definitions of observable and inducible
coherence that will be applied to subsequently quantify co-
herence. Finally, we express the probability of incoherence.

3.1 Assumptions
In the following, we assume that a Web site to be crawled

consists of n Web pages that change over time that occur
independent of each other. Time for downloading contents
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Figure 2: Crawl c containing coherence interval (left)
and without coherence interval (right)

is neglected and the time between any two subsequent down-
loads is equal. Change probabilities are considered to be
known for any two pages.

3.2 Notation
We assume that a Web site to be crawled consists of n

Web pages numbered {p1, . . . , pn}. Changes of these Web
pages occur per time unit immediately before download and
independent of each other according to the probabilities
λ1, . . . , λn that are associated with the Web page of the
corresponding number. We assume that the delay ∆t between
the downloads of the pages is the same, and the download
time is neglected. For convenience [ts, te] denotes the crawl
interval, where ts = t1 is the starting point (download of the
first page) of the crawl and te = ∆t ⋅ n = tn is the ending
point of the crawl (download of the last page). The time of
downloading page pi is denoted as t(pi) = tj having j ∈ [1, n].
In addition, we assume to retrieve the last modified stamps
of pages µ1, . . . , µn (having µi ≤ t(pi)) upon download. We
call the consecutive process of downloading the Web pages
{p1, . . . , pn} of an entire Web site a crawl c.

3.3 Definitions
The following definitions are based on a common notion

of “coherence” applied to the issue of Web archiving and
– thus – particularly to Web crawling. Our understanding
of coherence refers to the explanations given in the Oxford
English Dictionary3 describing coherence as “the action or
fact of cleaving or sticking together”, which – in terms of a
Web site – results in a “harmonious connexion of the several
parts, so that the whole 'hangs together'”.

Defintion 3.1. Coherence
1. A single Web page is always coherent.
2. The invariance interval [µi, µ

∗
i ] of page pi lies between

the last modified time stamp µi at time t(pi) of downloading
pi (µi ≤ t(pi)) and the next change µ∗i following t(pi).
3. Two or more pages are coherent if there is a time point (or
interval) tcoherence so that a non-empty intersection among
the invariance interval of all pages exists:

∀pi,∃tcoherence ∶ tcoherence ∈
n

⋂
i=1

[µi, µ
∗
i ] ≠ ∅

Figure 2 depicts our definition of coherence in a graphical rep-
resentation of a Web site consisting of four pages (p1, . . . , p4).

3http://dictionary.oed.com

The download of a page pi by the crawler is indicated by a
black circle. As described above, we assume that there is a
single download per time unit. In our example, the down-
load sequence is given as p1, p2, p3, p4 occurring at t1, t2, t3, t4.
Even more, all pages exist during the whole crawl interval
[t1, t4]. However, some pages are subject to changes taking
place in the crawl interval. In the example on the left hand
side of figure 2, page p2 changes at t3 and page p3 changes at
t2. In combination with the crawl sequence mentioned before,
this results in a coherence interval spanning from t2 till t3
(tcoherence = [t2, t3)). In the example on the right hand side
of figure 2, page p1 and p3 change at t2. In consideration of
the same crawl sequence as before, this results in an empty
coherence interval (tcoherence ∈ ∅). Since the union of the
uncovered intervals of pages p1 and p3 spans the whole crawl
interval, there is not a single time point that ensures an “as
of time point x (or interval [x, y])” capture of this Web site.

From a practical point of view, the definition of coherence
introduced before is of limited value only. The key point
is simple: A real life crawler is “left-hand side aware”, but
“right-hand side blind”. Since a Web page might change
immediately after its download, a crawler can only be certain
about the appearance of page pi within an interval lasting
from (if available) this page’s last modification date µi until
its time of download t(pi) during the course of crawl c.
To this end, we now introduce a definition of observable
coherence, which allows a crawler to disclose coherence based
on the last modified stamp of Web pages.

Defintion 3.2. Observable Coherence
Two or more Web contents are observable coherent if there
is a single time point tcoherence so that there is a non-empty
intersection of the intervals spanning the respective down-
load time t(pi) and the corresponding last modified stamp µi

retrieved at time of download (µi ≤ ti):

∀pi,∃tcoherence ∶ tcoherence ∈
n

⋂
i=1

[µi, t(pi)] ≠ ∅

Due to the fact that a crawler is “left-hand side aware”,
but “right-hand side blind” the time point tcoherence needs
to be carefully selected. In case, a coherence statement is
desired about all crawled contents of a Web site a specific
case of observable coherence – called measurability – is re-
quired. Given only the knowledge obtained through a crawl
c spanning the time interval [t1, tn], measurability is given
only for a single coherence time point (t1 = tcoherence).

Lemma 3.3. Measurable Coherence
Given a Crawl c measurable coherence can only be given if
the crawl is observable coherent. Measurability is only given
for t1 = tcoherence.

Proof. Assume the contrary and pick a random page pi

downloaded after p1 (that means t(p1) < t(pi)) to become the
reference time point of assurance. Without the loss of gen-
erality we pick the next page (that means p2) to become the
new reference time point of assurance. Since we require mea-
surability we have to intersect over all measurable coherence
intervals. These are (at least) [µ1, t(p1)] and [µ2, t(p2)],
having µ2 ≤ t(p2). However, when intersecting the intervals
with respect to any other point than t1 (like tcoherence = t2 in
this case), the intersection is empty by definition since the
interval of p1 ends at t(p1) = t1.
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Figure 3: Measurable coherence fulfilled (top) and
violation of measurable coherence (bottom)

Figure 3 highlights the concept of measurable coherence (as
a specialization of observable coherence) in a graphical rep-
resentation of a Web site that consists of n pages. Assuming
a download sequence p1, . . . , pn spanning the crawl interval
[t1, tn] the respective observation intervals/time points span
from t1 (wrt p1) up to [t1, tn] (wrt pn). As a consequence,
the risk of a single Web page pi being incoherent heavily
depends on its position during the course of crawl c, which
will be subject to further investigation in section 3.4. The
top of figure 3 depicts n successful tests of measurable coher-
ence. This results in an assurable coherence statement for
the entire Web site valid at time point tcoherence = ts. By
contrast, the bottom of figure 3 indicates a failed measur-
able coherence test for page p3. In this case, page p3 was
modified at t2, which resulted in an updated last modified
stamp (µ3 = t2). For that reason, there might not be given an
assurable coherence statement for the entire Web site, since
the time interval [t1, t2) is insecure with respect to page p3.

In reality and against the background of large Web sites it
appears almost impossible to achieve an assurable coherence
statement. Though, we might not be able to assure coher-
ence for an entire Web site, we might still be interested in
specifying how “coherent” the remaining parts of our crawl c
are. For that purpose, we introduce a metric that allows us
to quantify the quality of a crawl c.

Defintion 3.4. Quantifying Measurable Coherence
First we define an error function f(pi) that counts the oc-
curring incoherences during the crawl:

f(pi) = { 0 , if µi ≤ ts
1 , else

The overall quality of a crawl c is then defined as:

q(c) = ∑
n
i=1 f(pi)
n

, n ≥ 1

Unfortunately, the reliability of last modified stamps can-
not be guaranteed due to missing trustworthiness of Web
servers. Hence, the only 100% reliable method is to self
create a “virtual time stamp” by comparing the page’s etag
or content hash with its previously downloaded version. To
this end, we introduce an induced coherence measure that
allows to gain full control over the contents being compared.

We now apply a crawl-revisit sequence Π(c, r), where r is a
subsequent revisit of the previously crawled set of Web pages
{p1, . . . , pn}. In this consecutive revisit process we obtain a
second (and potentially different) version of the previously
crawled pages denoted as {p̃1, . . . , p̃n}. Hence, the crawl-
revisit sequence Π(c, r) consists of n crawl-revisit tuples
π(pi, p̃i) having i ∈ {1, n}. Technically, the last crawled page
pv having t(pv) = n is not revisited again, but considered
as crawled and revisited page at the same time. Hence,
the revisit takes place in the time interval [tn+1, t2n−1]. As
for visits, the time of downloading page p̃i is denominated
as t(p̃i) = tk now having k ∈ [n,2n − 1]. In accordance
with the definition of the crawl interval, for convenience we
denote [t̃s, t̃e] to be the revisit interval, where te = t̃s = tn
is the starting point of the revisit (download of the last
visited page that is at the same time the first revisited page)
and t̃s = ∆t ⋅ (n − 1) = t̃e is the ending point of the revisit
(download of the last revisited page). In addition, we define
the etag or content hash of a page or an revisited page as
θ(m) having m ∈ {pi, p̃i}. Overall, a complete crawl-revisit
sequence Π(c, r) spans the interval [t1, t2n−1]. It starts at
ts = t1 with the first download of the crawl and ends at
t̃e = t2n−1 with the last revisit download.

Defintion 3.5. Inducible Coherence
Two or more Web contents are inducible coherent if there is
a time point tcoherence between the visitation of pages t(pi)
and the subsequent revisits t(p̃i) where the etag or content
hash of corresponding pages (θ(m) having m ∈ {pi, p̃i}) has
not changed:

∀pi,∃tcoherence ∶ θ(pi) = θ(p̃i) ∧ tcoherence ∈
n

⋂
i=1

[t(pi), t(p̃i)]

Figure 4 highlights the functioning of inducible coherence
applied to a Web site consisting of n pages. We assume
a download sequence p1, . . . , pn spanning the crawl interval
[t1, tn] and an inverted subsequent revisit sequence p̃n, . . . , p̃1

spanning the revisit interval [tn, t2n−1]. Like with measurable
coherence, the risk of a single Web page pi being incoherent
heavily depends on its position in the crawl-revisit sequence
Π(c, r), which will be subject to further investigation in
section 3.4. The left upper part of figure 4 depicts n successful
tests of inducible coherence. This results in an assurable
coherence statement for the entire Web site valid at time point
tcoherence = tn. By contrast, the lower left section of figure 4
indicates a failed inducible coherence test for the crawl-revisit
tuple π(p3, p̃3). In this case, page p3 was modified elsewhere
between t(p3) = t3 and t(p̃3) = t̃n−3 = t2n−3, which results
in a failed inducible coherence test. Different from tests for
measurable coherence (cf. figure 3), we are in this case (due
to non-existing or non-reliable last modified stamps) not able
to determine the exact time point of modification. To this
end, we are only able to discover a boolean result because
of a failed etag or hash comparison for the crawl-revisit
tuple π(p3, p̃3). The whole interval is flagged as insecure,
even though, the modification might have taken place far
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Figure 5: Periled slots in measurable coherence

beyond the aspired coherence time point (tcoherence = tn).
Thus, despite being coherent from a global point of view for
tcoherence = tn, a real life crawler might not be able to figure
this out (cf. figure 4 for details). Consequently, there might
not be given an assurable coherence statement for the entire
Web site, since there is an insecure time interval with respect
to the crawl-revisit tuple π(p3, p̃3).

Likewise for measurable coherence, in reality and against
the background of large Web sites it is almost unfeasible to
achieve an assurable coherence statement for an entire Web
site based on inducible coherence. Though, we might still be
interested in specifying how “coherent” the remaining parts
of our crawl c are. For that purpose, we introduce a metric
that allows us to express the quality of a crawl c.

Defintion 3.6. Quantifying Inducible Coherence
First we define an error function f(π(pi, p̃i)) that counts the
occurring incoherences for crawl-revisit tuple π(pi, p̃i) of the
crawl-revisit sequence Π(c, r):

f(π(pi, p̃i)) = { 0 , if θ(pi) = θ(p̃i)
1 , else

The overall quality of a crawl c is then defined as:

q(c) = ∑
n
i=1 f(π(pi, p̃i))

n
, n ≥ 1

Given the previous definitions we are able to evaluate the
quality of a crawl c. Since we intend to increase the overall
quality, we examine the probability (and thus the risk) of
crawling incoherent contents.

3.4 Probability of Incoherence
The probability of a single page pi being incoherent with

respect to the reference time point or time interval tcoherence

is an important parameter to consider when scheduling a
crawl. Incoherence occurs, when a page pi is subject to one or
more modifications µ′i that are in “conflict” with the ongoing
crawl, which is either based on measurable coherence (cf.
section 3.3) or on inducible coherence (cf. section 3.5) with
respect to the reference coherence time point tcoherence.

3.4.1 Conflict Probability in Measurable Coherence
A conflict of measurable coherence is given if:

∃µ′i ∶ µ′i ∈ [ts, t(pi)] (1)

That means, a page has been modified at least once since the
start of the crawl ts and the time of downloading this page
t(pi). Given a page’s change probability λi and its download
time t(pi), the probability of conflict κ(pi) is given as:

κ(pi) = 1 − (1 − λi)t(pi)−ts (2)

Figure 5 shows in a graphical representation the pages of a
Web site p1, . . . , pn (vertically) to be crawled spanning the
crawl interval [t1, tn] (horizontally). Given a crawl order-
ing from top to bottom of pages pi to be downloaded, the
diagram differentiates between those slots where a change
of page pi affects the coherence of crawl c and others that
do not. The result is a set of concatenated slots – different
in size – that represents (overall) the risk of a crawl being
affected by changes. Even more, the length of each slot can
be understood as the magnitude of the exponent of κ(pi)
in equation 2. As can be easily seen, this risk of conflict
exponentially increases with the time of download ti.

3.4.2 Conflict Probability in Inducible Coherence
A conflict of inducible coherence occurs if:

∃µ′i ∶ µ′i ∈ [t(pi), t(p̃i)] (3)

That means, a page has been modified at least once since
its download during the crawling phase t(pi) and its revisit
t(p̃i). Given a page’s change probability λi, its download
time t(pi) and its revisit time t(p̃i), the probability of conflict
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Figure 6: Periled slots in inducible coherence

κ(pi) is given as:

κ(pi) = 1 − (1 − λi)t(p̃i)−t(pi) (4)

Potentially conflicting slots in applying inducible coherence
are shown in figure 6. In this example, a crawl ordering from
top to bottom (p1, . . . , pn) and revisits from bottom to top
(pn−1, . . . , p1) is being applied. Likewise in the previous case,
the illustration differentiates between those slots where a
change of page pi affects the coherence of crawl c and others
that do not. Again, the result is a set of concatenated slots –
different in size – that represents (overall) the risk of a crawl
being affected by changes. However, since the crawl c now
takes twice the time, each periled slot is now double in size.
That means, the necessity of applying inducible coherence
increases the risk of conflict in the exponent of κ(pi) by a
magnitude of 2 (cf. equation 4).

As a consequence, from the previous observations we can
identify two factors that influence the potential incoherence
of a page pi with respect to the reference coherence time
point tcoherence: Page pi’s change probability λi and its
download (and revisit) time t(pi) (and t(p̃i)). Hence, we
will now introduce coherence optimized crawling strategies
incorporating both factors.

4. COHERENCE IMPROVED CRAWLING
Conventional archiving crawlers are based on a priority-

driven variant of breadth-first-search (BFS) crawling. Even
more, they do not incorporate any knowledge about Web
sites that have been archived before. However, since informa-
tion about change probabilities can be derived, our crawling
strategy makes use of this “untapped” resource. In addition,
there is no revisit concept for “virtual time stamping” in
conventional implementations of archiving crawlers.

4.1 Crawling for Measurable Coherence
In case of archiving a Web site that provides precise time

stamps of Web contents we apply our measurable coherence
approach. In a first step, we compute the change proba-
bilities λi of those pages pi to be crawled. Pages are then
sorted according to their change probability in descending
order and sent into the crawling queue. Our aim is to find a
schedule, which allows us to assign all slots (from small to
large) according to the triangle-like shape in figure 5. Hence,
we introduce a user definable (e.g. by the crawl engineer)
threshold η, which allows to specify the readiness to assume
risk encountering incoherence upon download. The threshold
η is to this end evaluated against the conflict probability
(cf. formula 2) of the next page scheduled for download
pslot, in order to discard it if a “less risky” page exists in
the schedule. We start with assigning the uncritical slot (as
we assume that changes of Web pages might occur only per
time unit immediately before download) with length 0 at the

first position (pslot = 1) to the most critical content (“joker”
position). Given t1, formula 2 becomes zero regardless of
λi. However, from now on t increases stepwise so that any
downloaded content bears the risk of having changed since
the start of our crawl. In case, the currently assumed conflict
probability is less than the given threshold (κ(pslot) < η), the
page pslot is downloaded and the crawl is continued. But, if
this condition is not fulfilled, we skip the page at pslot for the
moment being. Crawling then continuous until the nth posi-
tion of our queue is reached. Then we continue downloading
those pages that have been skipped in the previous stage. In
order to keep up a (depending on the predefined threshold
η) slight chance of still downloading coherent contents, we
now proceed downloading pages in reversed order until all n
pages have been downloaded. A pseudo code implementation
of the strategy described is shown in figure 7.

input: p1, . . ., pn - list of pages in descending order of λi,
η - readiness to assume risk threshold

begin
Start with: slot = 1
while slot ≤ n
do

if κ(pslot) < η then /* no conflict expected */
Download the page pslot

end
Continue with next iteration: slot + +

end

Download skipped pages in reversed order of their index
end

Figure 7: Measurable coherence crawling

4.2 Crawling for Inducible Coherence
Due to the unreliability or non-existence of last modified

stamps in most real life crawls, there is a need to ensure
coherence based on inducible coherence. As outlined in
section 3.5 this method is based on self created “virtual time
stamps” by comparing the page’s etag or content hash with
its previously downloaded version in a three-stage process.

Starting point is a list of pages pi to be crawled sorted in
descending order according to their change probabilities λi.
Like before, the intention is to identify those pages that might
overstep the readiness to assume risk threshold η. Since now
all pages need to be scheduled according to the reference time
point treference = tn being the last page to be crawled during
the crawling phase, we need a different queuing strategy:
We try to create a V-like access schedule having the (large)
slots of stable pages on top and the (small) slots of instable
ones at bottom (cf. figure 6). Again, we start with assigning
the uncritical slot (as we assume that changes of Web pages
might occur only per time unit immediately before download)
with length 0 to the most critical content at the first position
(pslot = 1) of our queue. Since, initially, the length of the
slot in the “joker” position (tn) to be assigned is zero, the
threshold condition does not hold. However, from now on
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input: p1, . . ., pn - list of pages in descending order of λi,
η - readiness to assume risk threshold

begin
Start with: slot = 1, lastpromising = n
while slot ≤ lastpromising

do
if κ(pslot) ≥ η then /* conflict expected! */

Move pslot to position lastpromising

Decrease promising boundary: lastpromising − −

end
else

Increase promising boundary: promising + +
end

end

slot = n while slot ≥ 1
do /* visit from hopeless to promising */

Download page pslot

Decrease slot counter: slot − −
end

slot = 2 while slot ≤ n
do /* revisit from promising to hopeless */

Revisit page pslot

Increase slot counter: slot + +
end

end

Figure 8: Inducible coherence crawling

t (and thus the size of slots) increases stepwise so that any
download bears the risk of being incoherent. To this end, we
evaluate the current page’s conflict probability (cf. formula
4) against the user defined threshold (κ(pslot) ≥ η). As it is
rarely possible to include all pages in this V-like structure,
we split the download schedule into a promising section and
a hopeless section. In case, the given threshold is exceeded
we move the page at pslot to the lastpromising position, which
is the (at this point in time) the first position after those
pages not exceeding the conflict threshold η. Otherwise, the
page will be scheduled for download at pslot. This process
is continued until all pages pi have been scheduled either in
the promising section or the hopeless section. In the next
stage, the crawl itself starts. During the crawling phase, we
begin with the most hopeless ones first until we continue with
those pages that have been allocated in the promising section.
After completion, we directly initiate the revisit phase in
the reverse order. We begin with the first element after the
“joker” position (pslot = 2) until the revisit of the remaining
pages has been completed. A pseudo code implementation
of the strategy described is shown in figure 8.

5. EXPERIMENTAL RESULTS
We now compare our approach toward coherence improved

crawling with related strategies. Experiments were run on
synthetic data in order to investigate the performance of
versatile crawling strategies within a controlled test environ-
ment. In order to resemble real life conditions, we simulated
small to medium size crawls of Web sites consisting of 10.000
– 50.000 contents. In addition, we simulated the sites’ change
behavior to vary from nearly static to almost unstable.

All experiments followed the same procedure, but varied in
size of Web contents and change rate. Each page of the data
set has a change probability λi in the interval [0; 1]. Within
the simulation environment a change history was generated,
which registered every change per time unit. The probability
that page pi changed at tj is P (µi) = P [χ(tj) ≤ λi] where
χ(tj) is a function that generates per time unit a uniformly
distributed random number in [0; 1].

As mentioned before, conventional implementations of
archiving crawlers are based on a breadth-first-search (BFS)
crawling strategy and do not incorporate revisits. However,
“virtual time stamping” is unavoidable in order to determine
coherence under real life crawling conditions. Therefore, we
compare our coherence improved crawling strategy based
on inducible coherence with crawl revisit pairs based on
BFS-LIFO (last in, first out) as well as BFS-FIFO (first
in, first out). In addition, we indicate baselines for optimal
and worst case crawling strategies, which are obtained from
full knowledge about changes within all pages pi during the
entire crawl-revisit interval. Hence, these baselines are only
considerable as theoretical achievable limits of coherence.

Figure 9 depicts the results of our improved inducible crawl-
ing strategy compared with its “competitors” BFS-LIFO and
BFS-FIFO. Our improved crawling strategy always performs
better than the best possible conventional crawling strat-
egy. Experiments are based on a Web site containing 10.000
contents and different readiness to assume risk thresholds η
ranging from [0.45; 0.7]. In addition, our strategy performs
about 10% better given non-pathological Web site behaviour
(neither completely static nor almost unstable). Values of
η between [0; 0.45) or (0.7; 1] perform less effective. They
induce an either too “risk-avoidant” (η ∈ [0; 0.45)) or too
“risk-ignorant” (η ∈ (0.7; 1]) scheduling with minor (or even
zero) performance gain, e.g. when acting “risk-ignorant” in
heavily changing sites or “risk-avoidant” in mostly static sites.

Comparable results have also been produced given larger
(and smaller) Web sites having similar change distributions in
numerous experiments. In addition, our strategy introduced
to improve measurable coherence shows similar performance,
considering a by factor 2 decreased exponent of κ(pi).

6. CONCLUSIONS AND OUTLOOK
Data quality in Web archiving was and – with the advent

of Web 2.0 technologies – is an important issue in order to
preserve our digital culture. As we have figured out in this
paper, temporal coherence in Web archiving is a key issue
in order to capture digital contents in a reproducible and,
thus, later on interpretable manner. To this end, we have
given an overview on strategies that help to overcome (or
at least identify) the temporal diffusion of Web crawls that
last from a view hours only up to several days. Based on
the coherence framework introduced, we have shown how
to schedule crawls in order to reduce the risk of crawling
contents being incoherent. Even more, our experimental
results have shown that we are able to improve the data
quality in Web archiving by around 10% for non-pathological
(neither completely static nor almost unstable) Web sites.

While the approach presented in this paper is capable
of capturing Web sites as “authentic” as possible given a
certain time point or interval, our long-term objective – of
course – is to capture the Web for any given point in time.
Hence, we currently pursue studies on extending our time
point (or short interval) based coherence model to larger
time-frames. By doing so, we try to increase the coverage of
our archiving strategies from “isolated” time points toward a
full coverage. In this aspect, we intend to incorporate partial
revisit strategies that pay more attention to those contents,
being more likely to change. We also plan to develop more
sophisticated machine learning techniques that will help us
to identify change probabilities of Web contents accurately.

25



0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

3031 3815 5276 7794 16272 20692 27307 34032 41723 56652

Total changes in Web site during time of crawling

C
o

h
e

re
n

c
e

Optimal

Conflict adjusted (0,45)

Conflict adjusted (0,5)

Conflict adjusted (0,55)

Conflict adjusted (0,6)

Conflict adjusted (0,65)

Conflict adjusted (0,7)

Conventional + LIFO

Conventional + FIFO

Worst

Figure 9: Comparison of inducible crawling strategies in a Web site with 10.000 contents

Acknowledgements

This work was supported by the 7th Framework IST programme
of the EC through the small or medium-scale focused research
project (STREP) on Living Web Archives (LiWA) contract no.
216267. We thank our colleagues for the inspiring discussions.

7. REFERENCES
[1] A.-L. Barabási. The Physics of the Web. Physics World,

14:33–38, 7 2001.
[2] U. Brandes and T. Erlebach (eds). Network Analysis -

Methodological Foundations, LNCS vol. 3418. Springer,
Berlin Heidelberg New York, 2005.

[3] B. E. Brewington and G. Cybenko. Keeping up with the
changing Web. Computer, 33(5):52–58, May 2000.

[4] S. Chakrabarti. Mining the Web: Discovering Knowledge
from Hypertext Data. Morgan Kaufmann, August 2003.

[5] J. Cho and H. Garcia-Molina. The evolution of the web and
implications for an incremental crawler. In VLDB ’00: Proc.
of the 26th intl. conf. on Very Large Data Bases, pages
200–209, San Francisco, CA, USA, 2000. Morgan Kaufmann
Publishers Inc.

[6] J. Cho and H. Garcia-Molina. Effective Page Refresh
Policies for Web Crawlers. ACM Transactions on Database
Systems, 28(4), 2003.

[7] J. Cho and H. Garcia-Molina. Estimating Frequency of
Change. ACM Trans. Inter. Tech., 3(3):256–290, Aug. 2003.

[8] J. Cho, H. Garcia-Molina, and L. Page. Efficient Crawling
through URL ordering. In WWW7: Proc. of the 7th intl.
conf. on World Wide Web 7, pages 161–172, Amsterdam,
The Netherlands, 1998. Elsevier Science Publishers B. V.

[9] J. Hendler, N. Shadbolt, W. Hall, T. Berners-Lee, and D.
Weitzner. Web Science: An interdisciplinary approach to
understanding the Web. Commun. ACM, 51(7):60–69, 2008.
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